The Left Part and the Auslander-reiten Components of an Artin Algebra

نویسندگان

  • IBRAHIM ASSEM
  • JUAN ÁNGEL
  • Ángel Rafael Larotonda
چکیده

The left part LA of the module category of an artin algebra A consists of all indecomposables whose predecessors have projective dimension at most one. In this paper, we study the Auslander-Reiten components of A (and of its left support Aλ) which intersect LA and also the class E of the indecomposable Ext-injectives in the addditive subcategory addLA generated by LA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shapes of Connected Components of the Auslansder-Reiten Quivers of Artin Algebras

The aim of these notes is to report some new developments on the problem of describing all possible shapes of the connected components of the Auslander-Reiten quiver ΓA of an artin algebra A. The problem is interesting since the shapes of these components carry some important information of the module category of A. For instance the algebra A is hereditary if and only if ΓA has a connected comp...

متن کامل

Auslander-Reiten theory in a Krull-Schmidt category

We first introduce the notion of an Auslander-Reiten sequence in a Krull-Schmidt category. This unifies the notion of an almost split sequence in an abelian category and that of an Auslander-Reiten triangle in a triangulated category. We then define the Auslander-Reiten quiver of a Krull-Schmidt category and describe the shapes of its semi-stable components. The main result generalizes those fo...

متن کامل

Preprojective Modules and Auslander-Reiten Components

In [2], Auslander and Smalø introduced and studied extensively preprojective modules and preinjective modules over an artin algebra. We now call a module hereditarily preprojective or hereditarily preinjective if its submodules are all preprojective or its quotient modules are all preinjective, respectively. In [4], Coelho studied Auslander-Reiten components containing only hereditarily preproj...

متن کامل

On Auslander–Reiten components for quasitilted algebras

An artin algebra A over a commutative artin ring R is called quasitilted if gl.dimA ≤ 2 and for each indecomposable finitely generated A-module M we have pdM ≤ 1 or idM ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander–Reiten quiver ΓA of a quasitilted algebra A. Let A be a...

متن کامل

Auslander-reiten Components Containing Modules with Bounded Betti Numbers

Let R be a connected selfinjective Artin algebra, and M an indecomposable nonprojective R-module with bounded Betti numbers lying in a regular component of the Auslander-Reiten quiver of R. We prove that the Auslander-Reiten sequence ending at M has at most two indecomposable summands in the middle term. Furthermore we show that the component of the Auslander-Reiten quiver containing M is eithe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006